Skip to content
GitLab
Projects Groups Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • M MathJax
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 304
    • Issues 304
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 15
    • Merge requests 15
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • MathJax
  • MathJax
  • Issues
  • #2327
Closed
Open
Issue created Feb 11, 2020 by Administrator@rootContributor

processEscapes set to true doesn't work

Created by: parhizkari

using version 3.0.1, using "processEscapes" set to "true" stops MathJax from working, giving the error "TypeError: Q.setAttribute is not a function". The folloowing is the minimal example that I tested:

<!DOCTYPE html>
<head>
  <meta charset="utf-8">
  <meta http-equiv="x-ua-compatible" content="ie=edge">
  <meta name="viewport" content="width=device-width">
  <title>MathJax v3 with TeX input and SVG output</title>
  <script>
  MathJax = {
    tex: {
    	inlineMath: [['$', '$']],
    	processEscapes: true
    },
    svg: {fontCache: 'global'}
  };
  </script>
  <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
</head>
<body>
    <h1>MathJax v3 beta: TeX input, HTML output test</h1>

    <p>
    When $a \ne 0$, there are two solutions to $ax^2 + bx + c = 0$ and they are
    $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
    \$equation\$
    </p>
</body>
</html>
Assignee
Assign to
Time tracking