Skip to content
GitLab
Projects Groups Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • G gcForest
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 33
    • Issues 33
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 2
    • Merge requests 2
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Ji Feng
  • gcForest
  • Issues
  • #55
Closed
Open
Issue created Dec 14, 2018 by mixml@mixml

Training is very slow

$python examples/demo_mnist.py Using TensorFlow backend. [ 2018-12-14 13:34:10,577][cascade_classifier.fit_transform] X_groups_train.shape=[(60000, 1, 28, 28)],y_train.shape=(60000,),X_groups_test.shape=no_test,y_test.shape=no_test [ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] group_dims=[784] [ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] group_starts=[0] [ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] group_ends=[784] [ 2018-12-14 13:34:10,588][cascade_classifier.fit_transform] X_train.shape=(60000, 784),X_test.shape=(0, 784) [ 2018-12-14 13:34:10,645][cascade_classifier.fit_transform] [layer=0] look_indexs=[0], X_cur_train.shape=(60000, 784), X_cur_test.shape=(0, 784) [ 2018-12-14 13:34:27,575][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_0.predict)=90.02% [ 2018-12-14 13:34:41,561][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_1.predict)=90.07% [ 2018-12-14 13:34:55,516][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_2.predict)=90.22% [ 2018-12-14 13:35:09,470][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_3.predict)=90.11% [ 2018-12-14 13:35:23,300][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_4.predict)=89.24% [ 2018-12-14 13:35:23,303][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_0 - 5_folds.train_cv.predict)=89.93% [ 2018-12-14 13:35:24,074][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_0.predict)=94.64% [ 2018-12-14 13:35:24,841][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_1.predict)=94.12% [ 2018-12-14 13:35:25,624][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_2.predict)=93.92% [ 2018-12-14 13:35:26,382][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_3.predict)=94.61% [ 2018-12-14 13:35:27,138][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_4.predict)=94.35% [ 2018-12-14 13:35:27,144][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_1 - 5_folds.train_cv.predict)=94.33% [ 2018-12-14 13:35:27,924][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_0.predict)=94.49% [ 2018-12-14 13:35:28,705][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_1.predict)=94.85% [ 2018-12-14 13:35:29,484][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_2.predict)=94.59% [ 2018-12-14 13:35:30,255][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_3.predict)=94.96% [ 2018-12-14 13:35:31,042][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_4.predict)=95.02% [ 2018-12-14 13:35:31,048][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_2 - 5_folds.train_cv.predict)=94.78% [ 2018-12-14 14:12:52,985][kfold_wrapper.log_eval_metrics] Accuracy(layer_0 - estimator_3 - 5_folds.train_0.predict)=91.26%

estimator0~estimator2 is fast, but estimator3 is very slow,how to fixed this problem?

Assignee
Assign to
Time tracking