Can I do train grayscale-image on MUNIT ??
Hello Sir,
I have interesting image-to-image translation. So I tried to your code using my-datasets.
My-datasets are as follows :
- grayscale (1 channel)
- 256 x 256
When start training, I met some error.
Namespace(b1=0.5, b2=0.999, batch_size=4, channels=1, checkpoint_interval=-1, dataset_name='noise2clip', decay_epoch=2, dim=64, epoch=0, img_height=256, img_width=256, lr=0.0001, n_cpu=8, n_downsample=2, n_epochs=4, n_residual=3, sample_interval=400, style_dim=8)
/home/itsme/anaconda3/lib/python3.7/site-packages/torchvision/transforms/transforms.py:288: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.
"Argument interpolation should be of type InterpolationMode instead of int. "
../../data/noise2clip/trainA
../../data/noise2clip/valA
Traceback (most recent call last):
File "munit.py", line 171, in <module>
for i, batch in enumerate(dataloader):
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 521, in __next__
data = self._next_data()
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1203, in _next_data
return self._process_data(data)
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 1229, in _process_data
data.reraise()
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/_utils.py", line 434, in reraise
raise exception
RuntimeError: Caught RuntimeError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop
data = fetcher.fetch(index)
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 49, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/data/TESTBOARD/additional_networks/generation/PyTorch-GAN_eriklindernoren/implementations/munit/datasets.py", line 40, in __getitem__
img_A = self.transform(img_A)
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torchvision/transforms/transforms.py", line 61, in __call__
img = t(img)
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torchvision/transforms/transforms.py", line 226, in forward
return F.normalize(tensor, self.mean, self.std, self.inplace)
File "/home/itsme/anaconda3/lib/python3.7/site-packages/torchvision/transforms/functional.py", line 351, in normalize
tensor.sub_(mean).div_(std)
RuntimeError: output with shape [1, 256, 256] doesn't match the broadcast shape [3, 256, 256]
How to train on my-case (using grayscale-datam MUNIT) ?
Thanks. Edward Cho.